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Abstract 

 

Exactly how to characterize the nature and evolution of distinctively human cognition is 

still a matter of some dispute. However, three facts are widely thought to be key to this 

characterization (though a number of other factors are often cited as well): (a) humans 

have the ability and disposition to be cultural learners; (b) humans have the ability and 

disposition to rely on mental states with rich representational contents to make decisions, 

and (c) humans have the ability and disposition to make and use tools. What is not clear 

exactly is how these three elements work together so as to explain the nature and 

evolution of specifically human cognition. In response, this paper argues that cultural 

learning, representational decision-making, and technology create a positive feedback 

loop: sophisticated cultural learning makes possible the manufacture of tools that increase 

the sophistication of representational decision-making, which in turn allows for yet 

further increases in the sophistication of cultural learning and tool manufacture.   
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Enhancing Thoughts:  

Culture, Technology, and the Evolution of Human Cognitive Uniqueness 

 

I. Introduction 

Saying that humans are cognitively unique is bordering on a triviality; what is far from a 

triviality is characterizing the nature of human cognitive uniqueness and explaining its 

evolution. However, that said, it is widely accepted that this characterization and 

explanation need to appeal to the following three facts: (1) humans are sophisticated 

cultural learners (Tomasello, 1999; van Schaik & Burkart, 2011; Boyd & Richerson, 

2005; Heyes, 2018; Henrich, 2015; Sterelny, 2012); (2) humans have the ability and 

disposition to rely on mental states with rich representational contents (Millikan, 2002, 

1989; Papineau, 2003; Schulz, 2018), and (3) humans are sophisticated tool-users and 

tool-makers (Vaesen, 2012; Osiurak & Reynaud, forthcoming; Režek et al., 2018; 

Wimsatt, 2007). What is not yet clear is how these ingredients work together to explain 

the nature and evolution of specifically human cognition. Making progress in determining 

this is the goal of this paper. 

Before getting started with this, though, it needs to be stressed that there are also some 

other elements that are often thought to underlie human cognitive uniqueness. Most 

notable among these are the abilities to communicate in a natural language (Friederici, 

2017) and to attribute mental states to other organisms (Tomasello, 1999), but also 

frequently mentioned is the ability for sophisticated causal and technological reasoning 

(Osiurak & Reynaud, forthcoming; Vaesen, 2012). Two points about these abilities 

should be noted here. 
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First, some of what follows directly touches on these other abilities: in particular, 

mental state and causal concepts are an example of the rich representational contents in 

(2), and the ability to communicate in a natural language is certainly part of what 

underlies (1). Second and most importantly, the point in what follows is not to argue 

against the importance of these other human abilities in explaining human cognition. 

Rather, the point is to show that there are further important relationships among facts (1)-

(3). So, while it may well be true that next to or underlying (1)-(3) are linguistic, 

mindreading, or causal reasoning abilities (among other things), the goal here is just to 

show that there are important interrelations among (1)-(3)—independently of whatever 

else may be true about these facts or the features giving rise to them. 

The paper is structured as follows. Section II presents the relevant aspects of cultural 

learning, representational decision-making, and technology. Section III lays out some of 

the key ways in which technology can enhance representational decision-making. Section 

IV adds cultural learning to the picture and shows that the upshot is a positive feedback 

loop between technology, representational decision-making, and cultural learning. 

Section V contrasts the resultant account with existing treatments in the literature. 

Section VI concludes. 

 

II. Cultural Learning, Representational Decision-Making, and Technology 

I here sketch the core aspects of cultural learning, representational decision-making, and 

tool use. No attempt at a systematic literature review is made; the goal is just to develop 

the necessary basis for the rest of the discussion in this paper. 
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1. Cultural Learning 

Humans learn many different things from others, from particular behaviors to high-level 

psychological traits (Boyd & Richerson, 2005; Henrich, 2015; Heyes, 2018; Nisbett et 

al., 2001; Piccinini & Schulz, 2019). A number of different models for how this cultural 

learning (CL in what follows) can proceed are defended in the literature: for example, it 

may be based on the sharing of joint attention (Tomasello, 1999), an innate sense of 

pedagogy (Csibra & Gergely, 2011), or an apprenticeship of sorts (Sterelny, 2012). 

Similarly, it may be that individuals learn from their parental generation, their own 

generation, or both, and they could learn from individual models (their best friend), or 

sets of people (what their friends do on average), and they can be subject to various 

biases in their learning (Boyd & Richerson, 2005; Henrich & McElreath, 2007; Heyes, 

2018; Godfrey-Smith, 2009, chap. 8). For present purposes, though, it is sufficient to note 

three key points about the human ability and disposition to learn from others—however, 

exactly, this ability and disposition is constituted. 

First, while some other animals (such as crows, rats, and chimpanzees) also seem to 

engage in various kinds of CL, humans learn more and more complex facts from more 

and more different models (Tomasello, 1999; Tomasello & Herrmann, 2010; Tennie et 

al., 2009; Tennie & Over, 2012; El Mouden et al., 2014; van Schaik & Pradhan, 2003; 

Henrich & McElreath, 2011; Henrich, 2015; Boyd et al., 2011; Heyes & Galef, 1996; 

Creanza et al., 2012; Laland & Janik, 2006; Sterelny, 2012). This is one of the main 

reasons why the appeal to CL is widely thought to be a key element in the explanation of 

human cognitive uniqueness. 
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Second, CL can be cumulative: a behavioral or psychological variant can be improved 

successively, by letting improvements achieved up to the present become the basis for 

future improvements (Tomasello, 1999; Tennie et al., 2009).1 In turn, this brings the 

acquisition of behavioral or cognitive variants with many different and complexly 

interacting parts within the scope of cultural learners—though they would be out of reach 

of individual learners (Tomasello, 1999; Tomasello et al., 2005; Tennie et al., 2009; 

Legare, 2019, 2017; Heyes, 2018; Henrich, 2015; Boyd & Richerson, 2005). 

Third and relatedly, the major adaptive benefit of CL is that it allows organisms to 

adapt faster to local conditions (Boyd & Richerson, 2005; Henrich, 2015; Henrich & 

McElreath, 2011, 2007; Fogarty & Creanza, 2017). In particular, the fact that CL is 

cumulative, but yet not dependent on the origination and then spread of suitable genetic 

variants, makes it adaptive for enabling organisms to determine the biologically 

advantageous ways to think and act in certain environments. These environments can be 

broadly characterized as those changing sufficiently quickly and drastically (either 

spatially or temporally) to make it adaptive for individuals to change their behaviors and 

thinking in the light of this environmental variation, but not so quickly that any 

information received from others is outdated by the time it is received (Boyd & 

Richerson, 2005; Piccinini & Schulz, 2019).  

 

2. Representational Decision-Making 

Representational decision-making (RDM in what follows) is the determination of 

behavior based on mental states with content. Exactly what it means for a mental state to 

 
1 This is sometimes called “Tomasello’s ratchet” (Tennie et al., 2009; Tomasello, 1999). 
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have content is still a matter of some dispute (Millikan, 1984, 2002; Papineau, 1987; 

Fodor, 1990; Dretske, 1988; Prinz, 2002). However, for present purposes, a detailed 

discussion of this is not necessary—any generally satisfactory account of mental content 

will do here. 

What is important is that RDM can involve contents (i.e. “concepts,” on a common 

construal of this notion: see e.g. Margolis & Laurence, 2015; but see also Machery, 2009) 

of different degrees of complexity. On one extreme, it can involve purely perceptual 

concepts: the organism makes it behavior dependent on how it perceives the world. On 

the other extreme, it can involve highly abstract and complex concepts—i.e. concepts that 

only have a highly tenuous connection to perceptual states, and / or which are constructed 

out of other (perhaps themselves complex) concepts (Fodor, 1990; Prinz, 2002). Key 

among these latter concepts are indexical ones, self-referential concepts, aesthetic and 

moral concepts, scientific and metaphysical concepts, epistemic and mental concepts, and 

mathematical concepts (Millikan, 1989; Carey & Spelke, 1996; de Hevia et al., 2014; 

Gilbert, 2018; Papineau, 2003). 

It is furthermore important to note that it is a key feature of the latter, non-perceptual 

form of RDM that it is, broadly speaking, inferential in nature: instead of simply mapping 

particular perceptual states to particular behavioral outcomes, organisms infer what to 

do—either by making an inference from their perceptual states to the state of the world, 

or by inferring what they ought to, given how they perceive the world, or both (Millikan, 

2002; Sterelny, 2003; Carruthers, 2006; Schulz, 2018). Now, it is not entirely clear to 

what extent this inference is computational—and what the relevant sense of 

“computation” here is—rather than inferential in a non-computational sense (Piccinini & 
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Scarantino, 2010). However, since settling this is not important for present purposes, I 

shall sidestep further discussion of this issue and just refer to “representational 

inferences” (or its cognates) in what follows.  

As far as the evolution of RDM is concerned, there is good reason to think that one of 

its key drivers is cognitive efficiency (Lieder & Griffiths, forthcoming; Schulz, 2018) 

(though improved causal or counterfactual decision-making may also be a contributing 

factor: Dickinson & Balleine, 2000; Papineau, 2003; Millikan, 2002; Schulz, 2018). 

RDM allows an organism to streamline its cognitive and neural system in specific ways: 

instead of relying on a large battery of individual perception / action connections that 

need to be maintained and updated individually, it “chunks” some of these connections 

and / or infers the appropriate behavioral response to the situation it is in. This 

streamlining allows an organism to save costly neural and physical resources, as well as 

to save time adjusting to changes in its environment (Levy & Baxter, 1996; Lennie, 2003; 

Niven & Laughlin, 2008; Wang et al., 2016; Schulz, 2018; Lieder & Griffiths, 

forthcoming). 

Importantly, though, these benefits of RDM are offset with costs. RDM, generally, 

comes with reductions in decision-making speed and increases in the reliance on 

cognitive resources like concentration and attention (Lieberman, 2003; Greene, 2008; 

Ramsey, 2014; Epstein, 1994; Schulz, 2018; Wynn & Coolidge, 2011; Coolidge & 

Wynn, 2009). It is the balance of these costs and benefits that, plausibly, is a key driver 

of the evolution of RDM (Schulz, 2018; Lieder & Griffiths, forthcoming). This point can 

be illustrated by appeal to two-systems accounts of cognition (though there is no need to 

commit to the details of these accounts here): system-2 thinking can streamline cognition, 
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but will generally be time-, attention- and concentration-hungry, whereas system-1 

thinking tends to be faster and more resource-frugal, but requires a myriad of specific 

perception / action to be stored and maintained (Epstein, 1994; Kahneman, 2003; Lieder 

& Griffiths, forthcoming).  

In short: while RDM can be relatively fast and frugal—e.g. if it is highly practiced or 

based on decision rules that are tailored to the specifics of the environment in question 

(Gigerenzer & Selten, 2001; Schulz, 2018, chap. 8)—the evolution of RDM in general is 

driven by the balance of the benefits of streamlining cognition and the costs of increased 

need for cognitive and physical resources. An important corollary of this is that there will 

be selection for ways of lessening the cognitive and temporal costs of this way of 

interacting with the environment (while keeping its advantages) (Gigerenzer & Selten, 

2001; Gigerenzer et al., 2000; Schulz, 2018, chap. 8; Wynn & Coolidge, 2011; Lieder & 

Griffiths, forthcoming). 

RDM is important for explaining human cognitive uniqueness, as human cognition 

plausibly is at least partially characterized by the reliance on particularly abstract and 

complex concepts in particularly many different decision situations (Millikan, 1984, 

2002; Papineau, 2003; Schulz, 2018).2 In fact, a large number of the decisions humans 

make feature a large number of particularly complex and abstract concepts (e.g. whether 

a [[RANDOM] [SAMPLE]] is [REPRESENTATIVE] of its [POPULATION], or 

whether an [INHERITED] [[PROPERTY] [ARRANGEMENT]] is [JUST]).3 Note that 

the distinction between human and non-human cognition is one of degree, not of kind, in 

 
2 This is not to say that all decisions that humans make must feature many highly abstract and complex 

concepts—just that many (including many everyday) ones do. 

3 The reliance on these kinds of concepts may have an innate basis (Carey & Spelke, 1996; de Hevia et al., 

2014; Margolis & Laurence, 2015). However, for present purposes, this is not so central. See also below. 
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this regard. It is not that humans can do something—such as have abstract thoughts—that 

non-human animals cannot. Rather, the point is that humans can think more thoughts that 

feature more concepts, many of which are more abstract or complex than what is true of 

non-human animals. 

 

3. Technology 

The manufacture and use of tools—i.e. objects designed to fulfil a given function—is a 

well-known major adaptive advantage of many different organisms (van Schaik & 

Pradhan, 2003; Vaesen, 2012; Režek et al., 2018; Wadley et al., 2009; Wimsatt, 2007; 

Muthukrishna & Henrich, 2016). For present purposes, it is sufficient to make three 

points about the nature and evolution of tool use (“technology” in what follows). 

First, the adaptive benefits of technology come in degrees (Biro et al., 2013; Stout & 

Hecht, 2017; Sterelny, 2012). Technology can lead to slight gains in the speed or 

energetic efficiency with which organisms retrieve food from a given source, but they can 

also make completely new food sources available to organisms. 

Second, technology comes in different degrees of complexity (Biro et al., 2013; 

Renfrew & Scarre, 1998; Martinez, 2013; Coolidge & Wynn, 2009). On the one hand, the 

manufacture of a tool can be more or less difficult (Wadley et al., 2009; Režek et al., 

2018; Stout & Hecht, 2017). On the other hand, the use of a tool can similarly vary in 

terms of foresight and skill (Churchill & Rhodes, 2009; Sterelny, 2012). 

Third, there is no question that humans stand out in terms of their ability to make and 

use technology. While many different kinds of animals (see e.g. Mann & Patterson, 2013; 

Haslam, 2013; Sanz & Morgan, 2013; Fragaszy et al., 2013; McGrew, 2013; Hansell & 
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Ruxton, 2008; Cheke et al., 2011; Shumaker et al., 2011) have been shown to use or 

manufacture tools, humans are able to build and use tools of particularly high degrees of 

complexity (Shea, 2017). In particular, humans are able to build and use tools whose 

function it is to build other tools—they build robots that build computers that navigate 

airplanes. More abstractly, humans have also developed a device for storing and 

transmitting precise information about (nearly) anything: written language (Gibson & 

Ingold, 1993; Mullins et al., 2013). For these reasons, it is unsurprising that it is widely 

recognized that humans build and use tools that have vast adaptive value: indeed, it is 

widely thought that humans achieve much of their fitness through technology (Henrich, 

2015; Boyd & Richerson, 2005; Landy et al., 2014; Tennie & Over, 2012; van Schaik & 

Pradhan, 2003; Osiurak & Reynaud, forthcoming; Muthukrishna & Henrich, 2016). 

 

All in all, therefore, it is plausible that human cognitive uniqueness can be (if only 

partially) characterized by the fact that it draws on extensive CL, highly complex and 

abstract RDM, and sophisticated technology. However, this leaves open several 

questions. Key among these are the following three: 

 

(1) Why is it that humans are able to build tools of such complexity, rely on concepts 

with such complexity, and be cultural learners of such complexity? 

(2) Why do other organisms not have these abilities? 

(3) Why do humans have extensive abilities in all three of these dimensions? 
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These questions have not yet been cogently answered. While technology, RDM, and CL 

have been investigated individually, and while some connections between these three 

have been pointed out before (see e.g. Tomasello, 1999; Sterelny, 2012; Heyes, 2018; 

Boyd & Richerson, 2005; Fabry, 2017; Clark, 1997; Schulz, 2018; Klein & Edgar, 2002; 

Legare, 2019; Tennie & Over, 2012; van Schaik & Pradhan, 2003; Fogarty & Creanza, 

2017; Reindl et al., 2018; Muthukrishna & Henrich, 2016; Osiurak & Reynaud, 

forthcoming), there is a set of mutually reinforcing interactions among the three that has 

not yet been clearly documented. As I show what follows, laying out this set of mutually 

reinforcing interactions is key for getting at cogent answers to each of the above three 

questions. To bring this out, I begin by considering some of the major dynamic relations 

just between RDM and technology. Once that is done, I bring CL back into the picture. 

 

III. Technologically-Enhanced RDM 

The availability of technology allows for RDM to be drastically enhanced.4 Two different 

types of this sort of technology can be distinguished. 

First, technology might be available that allows organisms to store, for the long-term, 

some or all of the information its RDM relies on. This will be called technology of type 

(a) in what follows. 

To see the benefits of technology of type (a), assume an organism makes foraging 

decisions by comparing the food recovery rate at the current locale with the (relatively 

 
4 It is sometimes suggested that certain forms of technology allow organisms to use the environment 

directly to make a decision about what to do, and thus make it less adaptively valuable to rely on RDM 

(Brooks, 1991; Beer, 1990; L. B. Smith & Thelen, 1994; Silberstein & Chemero, 2012). There is a lot that 

can be said about this dynamical systems perspective on these issues; however, for now, it just needs to be 

noted that it does not exhaust the relationship between technology and RDM: as the rest of this section 

makes clearer, there are also adaptively positive connections between technology and RDM. See also 

Schulz (2007, chap. 7). 
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constant) average rate for the surrounding area. Assume also that the organism had 

technology available that allowed it to store this average rate for long-term usage, once it 

had it estimated. Then, instead of needing to estimate the latter rate over and over again, 

the organism just needs to do it once, and can then refer back to it whenever needed. This 

can the lower the average costs of making the relevant representational inferences 

significantly: after the initial setup, these costs can drop to near-zero. Importantly, given 

the complexity of some representational inferences, reducing the need for them can 

(though of course need not) come with major improvements in cognitive efficiency. 

Of course, this assumes that the organism in fact needs to make the same type of 

representational inference multiple times. However, while not universally plausible, this 

is plausible at least sometimes: streamlining repeated decision-making is precisely one of 

the drivers of the evolution of RDM (Millikan, 2002; Schulz, 2018; Whiten, 1995). 

The second type of technology that can significantly enhance RDM is one that itself 

makes some or all of the needed representational inferences for the organism. This will 

be called technology of type (b) in what follows. 

To see the benefits of this kind of technology, note that if an organism can access 

technology—some form of calculator, say—that is able to estimate the average food 

recovery rate of the area, then the organism never has to make the relevant inferences. In 

fact, the organism does not even need to be able to make the relevant inferences (or at 

least not within ecologically realistic timescales), and could still rely on complex RDM to 

interact with its environment. In this way, the availability of technology that makes some 

of the relevant representational inferences for the organism can also make RDM much 

faster and less concentration- and attention-hungry. 



 

 Page 13 

Technology of type (a) and (b) are especially noteworthy in this context, as it is 

plausible that the complexity—and thus the costliness—of a representational inference is, 

ceteris paribus, related to the abstractness and complexity of the concepts involved 

(Schulz, 2018; Ramsey, 2014). The closer a concept is to being perceptual, the easier it 

tends to be to relate it to the state of the world. Highly abstract concepts do not have a 

straightforward empirical signature, and thus tend to require more work to connect to the 

environment of the organism (Fodor, 1983, 1990; Prinz, 2002; Margolis & Laurence, 

2015).5 Similarly, more complex concepts—i.e. concepts with more parts—generally 

require more in the way of tracking the different parts in representational inferences than 

concepts with fewer parts (Fodor, 1983, 1990; Prinz, 2002; Margolis & Laurence, 2015). 

Two further points are worthwhile to note about technology of types (a) and (b).6 

First, some of the key examples of human technology are of type (a) and (b). So, as far 

as technology (a) is concerned, humans have long found ways of creating symbols that 

can be stored, transported, and manipulated (Muthukrishna & Henrich, 2016; Kelly, 

2015). Indeed, technology of this type is quite old: on a conservative estimate, symbolic 

cave art, figurines, and musical instruments appear in the material record about 40-50 

Kya (Bednarik, 2008; Renfrew & Scarre, 1998; Shea, 2017; Klein & Edgar, 2002; 

 
5 This does not mean that this trade-off is linear or one-sided. Some kinds of reasoning with abstract 

concepts can be quite easy (if I know that I have a hammer, and if I know that this a bone, then I can infer 

that I can break the bone with the hammer to obtain marrow). Still, the key point here is that the cognitive 

labor involved in RDM is generally an increasing function of the abstractness and number of abstract 

concepts employed: while determining how to use a [HAMMER], while non-trivial, might be relatively 

easily done. it remains true that determining whether a [PROPERTY] [ARRANGEMENT] is [JUST] is 

harder. 

6 The distinction between technologies (a) and (b) need not be sharp. For example, an organism might use 

tallying sticks first as a calculating device and then as a mobile storage device for the results of such a 

calculation. 
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Mellars, 1989; Lawson, 2012; Pike et al., 2012; Kelly, 2015; Morley, 2013).7 Technology 

of type (b)—i.e. broadly computational technology—is newer, but even that goes back 

several thousand years. For example, the “Senkereh Tablet” is a Babylonian calculating 

device about 5000 years old (Sugden, 1981), and the first sundials date from about 3000 

years ago (King, 1955); needless to say, recent human history has seen an explosion of 

suchlike computational tools. 

Second, it is plausible that precisely this is a key factor underlying the human ability 

to rely on many highly complex and abstract concepts in many of their representational 

decisions.8 Because they can outsource key aspects of the cognitive labor associated with 

their RDM, they can rely on concepts like “cause,” “just,” “knows,” or “number” so 

extensively (Landy et al., 2014; Stout & Chaminade, 2012; Muthukrishna & Henrich, 

2016). 

In some cases, the use of these concepts themselves is underwritten by the use of 

technology. For an obvious example, much of science (in a broad sense) is and has been 

conducted with the aid of written symbols—including (especially) mathematical ones—

and computational devices (Fabry, 2017; Hutto & Myin, 2012; Menary, 2007). However, 

many other examples can be cited as well, from making representationally difficult 

investment decisions (Benbasat & Dexter, 1982; Todd & Benbasat, 1992) (including in 

Babylonian times—Sugden, 1981) to determining where a ship is located (Pacey, 1992). 

 
7 This also fits well to Kelly’s (2015) argument that external devices of various kinds (such as the building 

complexes in the Chaco Canyon of New Mexico) have been constructed as memory aids. While Kelly 

focuses on using technology as an aid for remembering, rather than as information storage itself, this 

difference is not so important for present purposes. What matter here is that technology of this type enables 

humans to reduce the costs of making various kinds of representational inferences and decisions. 

8 Note that the claim is just that cognitive technology underwrites the reliance on many highly complex and 

abstract concepts—not that that all (representational) cognition depends on external aids, as it is often 

argued in the literature on embedded or situated cognition (Menary, 2007; Hutto & Myin, 2012; 

Haugeland, 1999; Clark, 2013). 
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Interacting with the world based on concepts such as “the procession of the perihelion of 

Mercury,” “maximizes revenue streams in risky environments,” or “is at longitude 

156.3319°” is only made possible by the use of technology like mathematical written 

calculations, the abacus, or the marine chronometer (Pacey, 1992; Schliesser & Smith, 

1996; G. E. Smith, 2005; Benbasat & Dexter, 1982). 

In other cases, it is the fact that technology exists that allows other decisions to be 

made quickly and efficiently that the above abstract and complex concepts can be relied 

on. Humans can spend time assessing what is “just,” for example, because they have 

tools available that allow them to track quickly and easily exactly who owns what: 

written records in a natural language. It is a lot harder to determine whether an inherited 

property arrangement is just if it is not clear what the property arrangement is, or how it 

came about—not to mention if our cognitive and other resources are already extremely 

taxed by the needs for organizing the basics of survival (Mithen, 1990, 1999; Wynn & 

Coolidge, 2011; Gilbert, 2018; Landy et al., 2014). Technology of type (a) or (b) can help 

make this kind of determination. 

Note that the point here is not that all uses of complex or abstract concepts in humans 

must directly or indirectly rely on this kind of technology, or that this the only thing this 

use depends on. In particular, it is entirely possible that various innate capacities are 

necessary to make decisions by relying on concepts like [KNOWS], [BELIEVES], 

[CAUSES], [IS A NUMBER] (Cosmides & Tooby, 1992; Carruthers, 2006; Margolis & 

Laurence, 2015; Carey & Spelke, 1996; de Hevia et al., 2014; but see also Sterelny, 2003; 
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Heyes, 2018; Cowie, 2003).9 Also, it is plausible that organisms can use other organisms 

as aides in streamlining their RDM (Schulz, 2018, chap. 7). 

The point is just that the reliance on technology of type (a) and (b) generally is one of 

the major components that makes it possible to often rely on RDM with many especially 

complex and abstract concepts. Whatever else is needed, without technology of type (a) 

or (b) it would generally be too time-consuming or take too much concentration and 

attention to use many different, highly abstract or complex concepts like [KNOWS] or 

[IS JUST] for many different decisions—which is precisely what it characteristic of 

distinctively human cognition. 

This is important to note, as the availability of technology (a) and (b) cannot be taken 

for granted. While many features of the organism’s environment can be used to 

temporarily store information in some form (Rowlands, 2010; Griffiths & Stotz, 2000; 

Clark, 1997, 2008), the long-term storage or computational enrichment of information is 

unlikely to be easily obtainable. 

So, when it comes to technology of type (b), it is just not generally the case that 

features of the environment themselves perform appropriate representational inferences.10 

Only deliberately generated tools are likely to be able to do this. Furthermore, building 

such tools is not straightforward. To be usable as an inferential aid, a tool needs to 

actually be able to perform the needed inferences, and it needs to be able to do so 

sufficiently efficiently. This implies that finding or building tools that can play this role is 

 
9 Relatedly, it is of course also true that an increase in working memory would also aid the reliance on 

complex and abstract concepts—and that it would thus be selected for (Coolidge & Wynn, 2009; Mithen, 

1999). 

10 Of course, some features might perform some kinds of calculations (Reed, 1996). The point is just that 

this will not be so for many of the representational inferences organisms might need to make. 
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unlikely to be easy (van Schaik & Pradhan, 2003; Reindl et al., 2018; Muthukrishna & 

Henrich, 2016; Osiurak & Reynaud, forthcoming; Tennie et al., 2009). 

Much the same holds for technology of type (a). To be useful in enhancing RDM, such 

technology needs to be able to store information in a way that buffers it from 

environmental contingencies—both inorganic and organic—and it needs to be able to 

store this information in a way that makes it easily and reliably accessible. This rules out 

many features of the environment, as these two demands pull in opposite directions: the 

need to buffer information from external influences favors storage that is not easily and 

reliably accessible, and the need for easily and reliably accessible information favors 

storage that is open to external influences. 

To overcome this, organisms are likely to need to manipulate the environment in some 

form. One of the major ways to do so is by devising or finding mobile sources of long-

term information storage (Shea, 2017; Kelly, 2015). With mobile long-term storage, 

external influences can be minimized, and the information remains easily accessible. 

However, devising suitable mobile information storages is not trivial: to be mobile, they 

need to be light, but to remain stable, sufficiently robust. Apart from some classic human 

examples, few such mobile information stores are known (Bednarik, 2008; Renfrew & 

Scarre, 1998; Fragaszy et al., 2013; Shumaker et al., 2011; Shea, 2017; Morley, 2013). 

Another way of solving this problem is by relying on technology that stores the 

information in places that are only accessible to the relevant organisms, but which are 

easily accessible to the latter. Such places are rare, and need to be constructed: generally, 

if one organism can access a given locale, so can at least several other organisms—not to 

mention the weather, etc.—and among the places that are only accessible to a given 
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organism, few are easily accessible to this organism. Apart from human examples (such 

as paintings in strategically located caves: Miyagawa et al., 2018; see also Kelly, 2015), it 

is therefore unsurprising that few examples of such forms of long-term storage have been 

found (Shea, 2017).11 

In sum: technology that strongly enhances RDM—through the provision of long-term 

storage of elements of representational inferences, or which does some or all of the 

needed representational inferences for the organism—plausibly is quite rare and can only 

be constructed with difficulty. So, given that (as just noted) humans have been able to 

manufacture and use technology of type (a) or (b), how did they manage to do this? It is 

here where CL enters the picture. 

 

IV. CL, Technology, and RDM: A Positive Feedback Loop 

CL interacts with both of the other two aspects of human cognitive uniqueness that are 

the forefront of this paper, and does so in both directions. To see this, consider the three 

pairs of relationships (CL – technology, technology – RDM, and CL – RDM) separately 

at first, and then combine them to get an overview of their overall interplay. 

 

1. The CL – Technology Nexus 

First and most straightforwardly, CL allows for the piecemeal, cumulative manufacture 

and refinement of technology of type (a) and (b) (Boyd & Richerson, 2005; Henrich, 

2015; Sterelny, 2012; Heyes, 2018; Tennie et al., 2009; Tomasello, 1999; Tennie & Over, 

 
11 It is possible that humans made paintings in many different places, but that these paintings only survived 

in caves. In that case, these paintings would not be an example of technology (a). However, the most 

common view of cave paintings is that they were, indeed, deliberately created in caves. I thank an 

anonymous referee for useful discussion of this point. See also Kelly (2015). 
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2012; van Schaik & Burkart, 2011; van Schaik & Pradhan, 2003). In this way, the answer 

to the question of how humans managed to build this kind of technology, despite the 

difficulties that come with designing, manufacturing, and using it, becomes easy to see. 

No individual human needs to be able to fully grasp the details of the representational 

inferences it is seeking to outsource. Rather, the appropriate kind of long-term storage 

and the external representational inference machines can be built slowly and over time.12 

However, there is also a set of reverse influences from complex technology to more 

sophisticated CL. This set of influences is less widely recognized, but it is very important 

still. As organisms become able to rely on tools that help them make some or all of their 

representational inferences, their ability to culturally learn from others is expanded, too. 

On the one hand, they can now learn more efficiently from others. Given the fact that 

learners have technology available that allows them to make some of the needed 

representational inferences, more information can be transmitted to them in a given time 

period and with a given level of effort. Models or teachers can just provide outlines of the 

needed information, and let the learners fill in the details as needed on their own. In this 

way, the effective (though not the actual) bandwidth of the transmission channel is being 

increased (see also Sterelny, 2012). In turn, such increases in the effective bandwidth of 

the CL channel mean that more information, and more complex information, can be 

obtained from others. 

On the other hand, cognitive technology can increase the set of possible sources of 

CL. Scrolls and books and other instances of technology of type (a) can be passed on to 

others, preserved over time, and carried across mountains. Cave paintings can be found 

 
12 This is not to say that technology does not also get enhanced by other things—including humans’ 

technological competence (Reindl et al., 2018; Osiurak & Reynaud, forthcoming; Tennie et al., 2009). 
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by future generations or strangers travelling through a given area. Technology of type (b) 

may provide organisms with ways of inferring what those only distantly related to them 

(in temporal, spatial, social, or epistemic position) are likely to think: ruins of a previous 

building can be used as the basis of a representational inference about where and how 

early generations thought it would be good live. Clothing worn by travelers can be used 

as the basis for of a representational inference about how those in other places live. 

However achieved, an increase in the number of possible sources of cultural information 

is important, as it makes the institution of CL more resilient (Sterelny, 2012). As there are 

more models, the probability is lessened that cultural information is being lost. This is of 

major adaptive importance for a cultural species like the human one (Heyes, 2018; 

Henrich, 2015). 

 

2. The Technology – RDM Nexus 

The idea that technology can enhance RDM was the topic of section III, and thus does 

not need to be restated here. However, what is important to note is that there is also a 

reverse impact from more complex and abstract RDM to more sophisticated technology. 

In particular, as organisms are able to rely more often on more complex or abstract 

concepts like [CAUSES], [FULCRUM], or [IS A PRIME NUMBER] they are able to 

build more complex kinds of technology (Osiurak & Reynaud, forthcoming; Tennie et 

al., 2009; Reindl et al., 2018). As noted earlier, understanding the causal, epistemic, or 

mathematical structure of the world is crucial for manipulating the world so as to 

manufacture complex tools—including tools that aid the understanding of the causal, 

epistemic, or mathematical structure of the world (Muthukrishna & Henrich, 2016; 
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Reindl et al., 2018; Osiurak & Reynaud, forthcoming; Bender & Beller, 2019, 2016; 

Tennie et al., 2009). In short: more complex & abstract RDM enhances the technological 

competences of an organism—and thus enables them to build more complex 

technology.13 

 

3. The CL – RDM Nexus 

Finally, there is a direct relationship between CL and complex / abstract RDM. Given the 

fact that CL can be cumulative, if the starting place of the CL can be highly abstract and 

complex thoughts, then CL can make these yet more abstract and complex (Tennie et al., 

2009; Tomasello, 1999; Heyes, 2012, 2018). This thus makes for another explanation for 

why human RDM has the complexity it has: the ability to start the process of CL with 

complex and abstract RDM (e.g. because it has been harnessed by sophisticated 

technology) enables humans to cumulatively learn ever more complex and abstract 

representations from others. 

 

Putting these three sets of interrelations together creates an overall positive feedback 

loop between CL, technology, and RDM. CL can make it possible to cumulatively 

manufacture and use the kinds of complex technology that, directly and indirectly, can be 

used to drastically enhance RDM, and which in turn significantly expands the quantity 

and stability of CL. 

 

 
13 The present account thus combines the perspectives of Tennie and Over (2012); van Schaik and Pradhan 

(2003); Osiurak and Reynaud (forthcoming); and Vaesen (2012): both individual competence and CL 

matter to technological competence, as these can reinforce each other. 
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[Figure 1] 

 

It is also possible to put at least a rough timeline on this looping evolutionary 

trajectory. It is reasonable to see the feedback cycle as coming into existence somewhere 

around 3.5 Mya; at this point, cranial capacity (e.g. of A. afarensis) was only slightly 

larger than that of P. troglodyte, and early hominins are generally thought not to have 

been too different from non-human primates (Shultz et al., 2012). A handful of iterations 

of the feedback loop then take place until about 1 Mya-500 Kya; at this point, complex 

tools (such as weighted javelins) are being made and human encephalization greatly 

increases  (Anton et al., 2014; Barham, 2013). The feedback process then starts to really 

bite, and the cycle accelerates by at least 40 Kya: at this point, humans create musical 

instruments and other complex tools that enhance and which are enhanced by RDM and 

CL (Adler, 2009; Morley, 2013; Killin, 2018). Finally, with the advent of writing and 

sophisticated computational devices about 5 Kya (Nissen, 1985), the loop is put into full 

swing, and advances in RDM, technology, and CL greatly accelerate each other. 

This, then, provides answers to the three questions at the heart of this paper: 

 

(1) Why is it that humans are able to build tools of such complexity, rely on concepts 

with such complexity, and be cultural learners of such complexity? 

Answer: It is (partly) because humans are cultural learners that they are able to build 

the kinds of tools that allow them to rely on highly complex and abstract concepts—

and it is (partly) because they are able to build the kinds of tools that allow them to 
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rely on highly complex and abstract concepts that they are cultural learners of such 

complexity. 

(2) Why do other organisms not have these abilities? 

Answer: For other organisms, the positive feedback loop did not get going. They were 

not sufficiently strong cultural learners to build the kinds of tools that would allow 

them to rely on highly complex and abstract concepts—and thus, they were not able 

to become sufficiently strong cultural learners to begin with.14  

(3) Why do humans have extensive abilities in all three of these dimensions? 

Answer: All three of these abilities co-evolve in a positive feedback loop. Advances 

in one of them are likely to be coupled with advances in others (Gibson & Ingold, 

1993; van Schaik & Burkart, 2011; van Schaik & Pradhan, 2003; Tennie & Over, 

2012). 

 

V. Differences to Other Accounts 

To get a better sense of this account of human cognitive uniqueness, it is useful to 

contrast it with some of the other ones in the literature. The goal in this is not a thorough 

literature review, but merely a focused contrast for purposes of elucidation. 

First among these accounts is that of Tomasello (see e.g. Tomasello, 1999; Tomasello 

et al., 2005; Tennie et al., 2009; Tomasello & Herrmann, 2010).15 The key to Tomasello’s 

picture of the evolution of human cognitive uniqueness are the related human abilities to 

 
14 Since positive feedback loops need not be deterministic, this can explain why technological competence 

can sometimes decrease (Jagher, 2016; Premo & Kuhn, 2010). If one step in the cycle happens to fall below 

the needed threshold, the remaining steps are more likely to do so, too. 

15 See also Csibra and Gergely (2011); van Schaik and Burkart (2011); Legare (2019); Tennie and Over 

(2012). 



 

 Page 24 

attribute representational mental states to others (to see others as intentional agents of 

their own) and to jointly attend to some event in the world (to attend to an event in the 

explicit recognition that others are attending to that event as well). Tomasello argues that 

these abilities allow humans to learn more things, and more complex things, from others. 

He also argues that they underlie the human ability to express themselves in a natural 

language—which further enhances their ability to learn from others. 

The account here defended is consistent with much that is in Tomasello’s work. 

However, there are two key points of departure from the latter. First, there is little in 

Tomasello on the importance of physical tools for the enhancement of RDM. The present 

account fills this lacuna. Second and most importantly, there is little in Tomasello on the 

interplay—that is, the existence of a positive feedback loop—among technology, CL, and 

RDM.16 Specifically, the present account adds an explicit treatment of the ways in which 

(i) CL not only allows for the manufacture of more complex tools, but is also amplified 

by the existence of complex tools, (ii) complex tools allow for more complex RDM, 

which in turns allows for the manufacture and use of more complex tools, and (iii) more 

complex RDM allow for more CL, which allows for more complex RDM. In this way, 

the present account can be seen as an expansion and deepening of the picture laid out in 

Tomasello. 

A second major account to take note of here is that of Heyes (2018). According to the 

latter, CL is at the heart of human cognitive uniqueness. While there may be a handful of 

small differences between human and non-human animals in terms of their 

“psychological starter-kit”—e.g. in terms of their propensities towards social 

 
16 He sometimes hints at something like this see e.g. Tomasello (1999, pp. 208-209), but he does not spell 

out these hints in the way it is done here. 



 

 Page 25 

aggression—most of what distinguishes human and non-human animals is culturally 

learned. Importantly, this includes psychological capacities such as mindreading and the 

ability to speak a language (i.e. the underpinnings of CL itself: Heyes, 2012). 

While there is again much that the present account shares with that of Heyes—such as 

the pride of place given to CL in explaining human cognitive uniqueness—it differs from 

the latter in three key respects. First, unlike Heyes’s account, the present account is not 

committed to a strong anti-nativism about mindreading or language: as noted in section I, 

the present account can allow these abilities to have some innate presuppositions. Second, 

there is nothing much about the impact of the manufacture of physical tools—symbolic 

mnemonic devices, the abacus, sundials—on RDM and CL in Heyes’s account.17 Finally 

and relatedly, Heyes does not emphasize the interplay among RDM, CL, and technology: 

she does not note the positive feedback cycles connecting these three. This is the heart of 

the present account, though.  

The third picture of the evolution of human cognition to mention here is the niche-

constructionist one. There are a number of different versions of this picture (Sterelny, 

2003, 2012, 2018; Fogarty & Creanza, 2017; Jablonka & Avital, 2010; see also Odling-

Smee et al., 2003), but they all share the ideas that (a) humans alter the environments in 

which they live, and (b) these alterations supported the evolution of distinctively human 

cognitive capacities, such as technology, language, and culture. 

The present account is broadly in this vein, too, but differs in important respects from 

others like it. In particular, the point emphasized here is less about altering the niche in 

 
17 Osiurak and Reynaud (forthcoming) discuss tool-use and tool-manufacture in a framework that is largely 

consistent with that of Heyes. However, they also do not integrate this into a positive feedback loop with 

CL and RDM. 
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which humans live, but concerns specifically the existence of a positive feedback loop 

among RDM, technology and CL. So, while Fogarty and Creanza (2017) note that 

agricultural food production can buffer human populations from environmental 

instability, thus supporting technological innovation even among small populations, they 

do not consider the ways in which technology can enhance and be enhanced by both CL 

and RDM—as is done here. Similarly, while Sterelny (2012) briefly notes that changes in 

technology can prepare the ground for enhanced CL, he does not consider in any kind of 

detail the kinds of connections among RDM, technology and CL here laid out. (Sterelny, 

2012 also commits to a specific model of CL—the apprentice model—that is not central 

here.) 

A final picture of human cognition that, while somewhat different in focus, is worth 

mentioning here is the work based on the “extended cognition” framework (Clark, 1997, 

2008, 2013; Dennett, 1995, 2000; Sterelny, 2017; Colagè & d'Errico, 2018). According to 

the latter, understanding human cognition cannot be done by seeing it as limited to what 

is going on in human brains—either because human cognitive states literally extend into 

the social and non-social environment, or because they are so embedded in the social and 

non-social environment that not including the latter in our theorizing about them would 

lead us to miss important cognitive phenomena.18 

There is no question that the present account of the evolution of human cognitive 

uniqueness, with its emphasis on CL and technology, has many affinities with the work 

on extended cognition. However, there are also several important differences to note. 

First, the present account, unlike some of the major accounts in the extended mind 

 
18 The extended-cognition-perspective partly cross-cuts some of the other accounts just mentioned 

(especially that falling under the niche constructionist framework: Sterelny, 2012, 1999, 2017, 2018). 
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literature (see e.g. Clark, 1997, 2008), is not metaphysical: no claims are being made here 

about where cognitive states begin and end. Second and most importantly, it is again the 

specifics of the account here—namely, the existence of a self-reinforcing enhancement 

process between RDM, CL, and technology—that set it apart from what is in the 

extended cognition literature to date. 

 

All in all, therefore, the core of what makes the present account stand out from what has 

been in the literature up to now is that it expands the set of relationships that need to be 

recognized as influencing the evolution of human cognitive uniqueness. While other 

accounts have also looked at aspects of RDM, technology, and CL, they have not looked 

at these three as creating a positive feedback loop. That is (picking up a point made in 

section I), the goal of the present account is not to downplay the importance of 

mindreading and language (Tomasello), technological competence (Ossiurk & Reynaud), 

apprenticeships (Sterelny), or imitation (Heyes). Rather, the point is that without paying 

attention to the positive feedback loop among RDM, tools, and CL, a compelling account 

of human cognitive uniqueness cannot be provided. While these three elements may well 

have other underlying enablers and presuppositions, they also influence each other, and 

this needs to be kept in mind when making sense of human cognitive uniqueness. 

 

VI. Conclusion 

A plausible inroad into the explanation of the nature and evolution of distinctively human 

cognition lies in the set of complex and dynamic relationships between CL, technology, 

and RDM. CL enables humans to build the kinds of tools that allows their decision-
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making to be based on highly abstract and complex mental representations, and the 

ability to rely on highly abstract and complex mental representations, in combination 

with sophisticated technology, expands their CL in its possible content and sources. 

While other animals may also have some of these elements—they can engage in some 

CL, in some technology and manufacture, and in some kinds of RDM—none of these 

elements appears sufficiently far advanced so that it can enhance the remaining elements 

in a positive feedback loop. In short: what makes human cognition so different from that 

of other organisms is that CL, technology, and RDM have pushed—and continue to 

push—each other to new heights. 
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